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STABILIZATION OF SHORT-WAVELENGTH DISTURBANCES

IN THE RAYLEIGH-TAYLOR INSTABILITY OF PLASTIC

SOLIDS BY A SURFACE LAYER OF HIGH YIELD STRENGTH

by

R. C. Mjolsness

ABSTRACT

The mechanical effects of a thin surface
layer in reducing the growth of the Rayleigh-
Taylor instability of a plastic solid plate
is investigated by representing the surface
layer as an elastic plate of high yield strength
and high bonding strength to the plastic. This

‘-1 plate may be either the surface layer itself or
~ ~a composite material formed by interactions of
~~: the surface layer with the solid surface layers.

~==l=m. In this approximation it is found under wide
?~~ ranges of conditions that short-wavelength
=~: disturbances are stabilized in linear approximation.i~

:s~~ In this limit the ‘gravitational’ energy increment
~+of the displaced plastic solid is overcome by

~~:~.the elastic shear energy of the stretched plate.
- -Long-wavelength disturbances are very weakly
~!

~m~%ffected by this mechanism. For a plastic plate
-..., of -1-cm thickness subjected to a pressure

difference of-100 kb rwe expect wavelengths
shorter than Ac !-10- cm to be effectively
stabilized by this mechanism.

I. INTRODUCTION

In this report we examine whether the mechanical properties of a thin surface.
layer can be expected to stabilize, or partially stabilize, the observedl Rayleigh-

Taylor instability of a plastic solid under strong acceleration. The surface*
layer may be just the material added

material formed

is treated here

by interactions with

as a single material

to the surface or it may be composite

the surface layers of the plastic, but it

of uniform composition. The plastic is
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assumed to be an ordinary metal plate (such as aluminum or copper) which undergoes

plastic transition when extreme (>100 kbar) pressures cause stresses larger than

the yield stress in the material.

If the surface layer has a sufficiently high yield strength to maintain its

elasticity under the induced lateral compression and the instability induced

longitudinal extension,and if the layer remains bonded to the plastic under the

instability shear stresses at the interface, then the surface layer will sta-

bilize moderately short wavelengths. We conjecture that very short wavelengths

would be similarly stabilized. If the surface Idyer becomes plastic or does

not remain bonded to the plastic plate, we do not see how it will be able to

significantly affect the growth of the instability.

II. ENERGY ANALYSIS FOR PLASTIC SOLID

Here we summarize the main points made in an analysis of the kinetic, grav-

itational, and plastic energies of the plastic plate alone by Miles.
2

Before

doing this we would like to discuss an apparent difficulty that has been foundl

in the Miles analysis.

Miles gives essentially two analyses of the problem. Case (l): The first is

valid at very small surface displacements

ka(t) << sl/G , (1)

where k is the wavenumber of the perturbation, a(t) is the amplitude of the sur-

face displacement, S1 is the yield stress in shear,and G is the shear modulus.

Miles assumes the Prandtl-Reuss constitutive equations, assumes the material

makes a transition to plastic flow uniformly throughout the material and cal-

culates the stresses by a particular sY~etrY assumption. In this regime the

plastic energy can be comparable to the other energies of the problem. It makes

a significant contribution to the damping of the instability, having a mathemat-

ical effect similar to the energy of surface tension at a fluid interface in cut-

ting off

I cl=

short-wavelength instabilities. Specifically, he findsz

(2)

I

where a is the growth rate of the mode and p is the density of the plastic.
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Case (2): The second

assunes the von Mises

‘1
<< G.

analysis does not assume very small amplitudes but

rigid-plastic constitutive equations and is only valid when

(3)

In this regime the plastic energy does not increase as rapidly as the other

energies as the amplitude of the displacement increases. Thus the plastic

energy makes a comparatively minor contribution to the damping of instabilities.

The growth rates are modified considerably at very early times but the

modification becomes very small before very long. The theory is not particularly

likely to give a good estimate of the small effects of the plastic energy in

slowing the growth of the disturbances, since at the very early time at which the

effects are significant the material is likely to be in evolution toward rigid-

plastic behavior and not well represented by the von Mises equations.

One of the contributions of Barnes et al; was to recognize that precise,

two-dimensional calculations of the nonlinear theory underlying Miles’ case (1)

yield results in a particular set of runs which disagree markedly with the

growth rate ofEq. (2). In fact, supplemental work3 showed that a formula

fairly similar to Eq. (2), but with G replaced by Sl, represented their results

fairly well. Additionally, their results agree with the available experiments.

An inference from these results which one might consider drawing is that

something must be basically wrong with the Miles analysis, since it fails so

badly to agree with either calculations or experiment. Actually the disagreement

results only from the fact that a comparison of the numerical and experimental

results with Eq. (2) never should have been made. The initial amplitude of the

displacement machined into the sample and assumed in the calculation is already

large enough to violate Eq. (l), the criterion that must be satisfied if Eq. (2)

is to follow as a valid prediction. Thus, Miles made no major theoretical error.

He merely was able to treat analytically a very small portion of the parameter

space of the problem, and Ref. 1 indicates how substantial are the corrections to

be expected from a full theoretical treatment of the problem. We can thus adopt

substantial portions of Miles’ analysis without making gross errors in the physics.

In particular, we work in the accelerated reference frame in which the

unperturbed plastic plate of thickness h is at rest and its unperturbed unstable

surface is at z = O. We consider surface perturbations of the form z = n(x,t~.

where



ri(x) = a(t)cos kx, (4)

and assume that the motion of the plastic is incompressible and adequately

described by a single mode of a scalar potential. We work in the

which

kh>>l.

Thenz to good approximation,the k.

length in they-direction and per

specified by

‘kin
= &p’ A*:*(t),

where A denotes the wavelength of

regime in

(5)

netic energy in the plastic mot-on per unit

wavelength in the x-direction, Ekin, is

(6)

the disturbance. Similarly, the gravitational

energy generated by the displacement of the plastic is given2 to equal accuracy

by

E
grav = -

where E “grav 7s
per wavelength

are normalized

+pAga2(t) , (7)

the gravitational energy per unit length in they-direction and

in the x-direction. All of the energies computed in this report

to the same dimension in the x-and y-directions and all carry

formally the dimensions of energy-per-unit length.

In the regime thatwe are considering (i.e., not restricted to very small

amplitude) the plastic energy will normally be a fairly small influence in

stabilizing the instability although it is fairly difficult to calculate its

precise role. We will therefore make a conservative analysis of the stabilization

of the instability by neglecting the plastic energy entirely. We can thus

anticipate that the instability will grow less than is indicated by the analysis

given here. We emphasize that we are not assuming that the plastic energy of the
I

plate is negligible--frequently it will be comparable to the other energies of

izing effects

is feasible.

the problem. We merely seek a conservative estimate of the stabi”

of the surface layer which is also as mathematically tractable as

4
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III. ELASTIC ENERGY OF THE SURFACE LAYER

.

We treat the surface layer as an elastic plate of thickness %, where

k<<h, (8)

and thus $ <<”h as well. In addition, .we assume that the layer is stress-free

when a(t) = O. The restriction of Eq. (8) simplifies the mathematics considerably,

in that we may obtain a first approximation to the elastic free energy by

treating the surface layer as a flat elastic plate under tension and subject

the strong equivalent gravitational field

9 =&!,P,

to

(9)

generated by the pressure difference across the plastic solid, Ap, and by

neglecting the kinetic and gravitational energies of the surface layer with

respect to the kinetic and gravitational energies$ respectively,of the plastic

plate. But the formalism thereby loses the capacity to deal with very short

wavelength disturbances. However, since we find a linear stabilization mech-

anism that is the more effective the shorter the wavelength (within the valid-,

ity domain of Eq. (8)) we will argue that the very short wavelengths must be

stabilized too, although we will not compute their behavior.

We denote, as usual,4 the internal stresses of the surface layer by Oij

and the strains by u... We assume that the surface layer occupies the region

-k< z ~ O and that ~~resses appear on the surfaces x = const. and y = const.

in order that: (1) no strains occur in the y–direction (the elastic surface

layer is bounded to the surface of the plastic and this surface does not

elongate in the y-direction) and (2) the extension in the x-direction is a simple

homogeneous extension (and not sheared due to gravitationally induced strains;

also, shears due to the curvature of the plastic surface are treated as a higher

order perturbation). The surface layer elongates in the z-direction under the

action of the ‘gravitational’ field and stresses occur in the z-direction to

support the weight of the layer. The equations of elastic equilibrium then have

the solution



and

%z=(+(i$(++. (lo)

where pe, a$and E are the density, Poisson ratio and Young’s modulus,resPectivelY~

of the elastic surface layer, and

=Oi#j,‘ij

uxx =~k2a2,

‘YY
=0,

and

‘= ‘* (%)($[+;)($-i n%‘2.2(,)●

In the above, the relations

6L=U ~k2a2(t)
L xx ‘4

follow for the small amplitude extension of the plastic surface undergoing

sinusoidal displacement. The remainder follow from equations of elastic

(11)

(12)

equilibrium, the boundary conditions,and the stress-strain relations.

By substituting the above expressions into the defining equation4 for the

free energy Efree associated with the elastic displacements of the surface

6



layer under tension we obtain

.

v

.

.

(13)

The first term of Eq. (13) is a constant energy associated with the straining

of the elastic by the gravitational fluid. The second term gives rise to

nonlinear corrections to the growth of the Rayleigh-Taylor instability.

We have so far presumed that the elastic surface layer is a flat plate

subject to displacements &x and 6ry in the x-and y-directions, where

6rx = ~k’a’(t)x

and

&-z =
( ‘l-o) ‘($( O@)(+@+ * “a’(t)’ ●

l+(J)(l-2(J

To this must be added the shear displacement

‘drz)shear
= -a(t)cos kx

corresponding to the motion of the surface layer in adapting itself to the

displacement of the surface of the plastic- This motion generates the strain

(14)

~ka(t)sin kx
‘Uxz)shear= 2

and the stress

~(oxz)shear=Z& ka(t)sin kx ,

and thus gives rise to the additional free energy of shear displacement

(15)

(16)

(17)
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E
shear ==&~k2a2(t) . (18)

Now the second term of Eq. (13), for the elastic energy under tension, is

clearly of order k2a2(t) times the elastic energy under shear given by Eq. (18).

Thus this term should be dropped in a calculation which only uses the dominant

term, Eq. (18), of the elastic energy under shear. This we will do in the fol-

lowing development. It is clear physically that an additional stabilizing mech-

anism (for nonlinear stabilization) is thereby neglected. However, it turns out

that the range of wavelengths and applied pressures for which the elastic fourth-

order terms significantly exceed the fourth-order terms (of order -k2a2(t)lE grav])
of the plastic plate roughly coincides with the range of conditions for which

Eq. (18) stabilizes the Rayleigh-Taylor instability. Outside this range of

conditions it is not known whether the total effect of the nonlinear terms is sta-

bilizing or not. It was judged too difficult to attempt to produce a valid non-

linear theory of the effect here. Subject to the above restrictions we will

adopt the expression

for the elastic energy of the surface layer.

IV. STABILIZATION OF THE RAYLEIGH-TAYLORINSTABILITY

The three energies Ekin, Eqrav,and Eelastic of Eqs. (6), (7),and (11)$

respectively, define a dynamical-system for the generalized coordinate a(t). The

equation of motion for a(t) may be put in Lagrangian form by substituting

T(:) = Ekin andv(a) = Egrav+Eelastic s
.

and resulting Euler-Lagrange equations take the form

*P 12a(t) =

[

1 EEA;PA9- g-~-
1

k2
a(t).

(20)

(21)
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Thus the system will be stable to small amplitude disturbances when

a

or, independently of Poisson’s ratio, when

00AZ 4j!<T~ .
m

(22)

(23)

When the applied pressure difference Ap is small enough and the wavelengths A are

short enough that Eq. (23) is satisfied, we expect to find that the suface layer

indeed stabilizes the disturbances, provided that the stresses in the surface

layer are small enough that the layer remains elastic and remains bonded to the

plastic. This involves principally a restriction on the initial perturbation

size to very small amplitude.

It should be noted that, according to Eq. (23), the shorter wavelengths are

farther from the stability boundary, once the wavelength is sufficiently short to

stabilize at all. It is on this basis that we believe that very short wavelengths

should be stable to the Rayleigh-Taylor instability. At very short wavelengths

we do not lose the stabilizing mechanism of Eshear; it is merely that our partic-

ular approximations for computing Eshear are invalid in this limit.

v. WILL THE SURFACELAYERREMAINELASTIC AND REMAIN BONDED TO THE PLASTIC?

To discuss the applicability of our model under the assumption that the sur-

face layer is stress-free at a = O= we calculate the several stresses in the

surface layer and see whether any of them exceed the relevant yield strengths.

‘t
= yield strength in tension of surface layer

‘t
= bond strength in tension between layer and plastic

Bs = bond strength in shear between layer and plastic. (24)
We calculate the stresses at a = amax to obtain a

yield strengths are exceeded.

The surface layer will remain elastic if the

does not exceed Yt. This yields the criterion

conservative estimate of whether

maximum of the shear stress a
xx

9



.()()7% % t *p+4,.j) k2a2(t) . (25)

This criterion will be satisfied for a wide range of pressure pulses and

instability wavelengths provided that Yt is in the kilobar range. It should

perhaps be emphasized that all the elastic parameters, yield strengths,and bond

strengths of this report refer to material conditions after the system may have

been shock heated bya shock that provides a portion of ‘gravitational’ field g.

These can easily involve temperatures of several hundred degrees Celsius, and

thus the correct values of parameters will often not be measured.

Similarly, the requirement that the forces required to support the surface

layer in the large ‘gravitational’ field g should not exceed 13tmay be

stated as

00Pe
~*p<Bt .

T

This criterion is again easy to

turn, requires a strong bonding

(26)

meet if Bt is in the kilobar range. But this, in

of the surface layer to the plastic.

The most severe

stipulation that the

h-i% ‘a(t)<

requirement for the validity probably comes from the

peak shear stress of Eq. (17) should not exceed Bs, namely,

Bs . (27)

small amplitudes (small ka). For wavelengths stable according to

is of the order of the initial perturbation size for one e-folding

For attainable values of E and Bs this is likely to restrict the stabilization

effect to very

Eq. (23), a(t)

period and then decays away. If the initial perturbation is sufficiently large

it is quite possible that the bonds between the plastic and the surface layer will

yield to the shear stress before the perturbation is damped to the range of safe

values of the shear stress. If this happens, any subsequent stabilizing effect

of the surface layer is probably minimal, since the surface layer will pull away

from the plastic and tend to form a separate mechanical system of its own. It

should also be noted that the requirements of Eq. (27) are largely opposed to the

10



requirements of two of the other validity conditions for the stabilizing effect,

namely, Eqs. (23) and (26). In the latter equations small Ap and large Eincrease

the range of wavelengths satisfying the criteria. Also, small A satisfies the

criteria when other quantities are fixed. But in Eq. (27) small E is needed and

for fixed parameters, large A is needed.

To fix ideas about what the several criteria imply, let us consider a

numerical example in which parameters in the plastic are chosen to be similar to

those adopted in previous numerical calculations. 1,3
We will estimate stresses

as though the plastic were flat when the surface layer was added. In actual fact

the sample would probably be prepared by machining in the initial perturbation and

then adding the surface layer. In this case only the stability estimate is

relevant when the initial perturbation is stable. Then the surface layer remains

nearly stress-free throughout its history. We take

h=~cm,

A=+cm,

kao= 0.1,

Ap = 100 kbar,

and

P = 7.6 cm-3 , (28)

where a is the initial amplitude displacement of the interface. Note that for

these c%ditions hk - 3 and just barely satisfies our requirements, while we will

see that the initial amplitude is almost too large for effective stabilization to

be likely. For the surface layer we take

!.=2.5 x 10-3 cm ,

11



(3
1=—
4’

(29)

and

E= 200 kbar .

Then substituting into the preceding formulas we see that the stabilization

mechanism is operative for

and so it is operative for

remain elastic if

Yt > 0.6 kbar.

(30)

our assumed perturbation. Also, the surface layer will

(31)

This is consistent with our general conclusion that significant stabilization of

short-wavelength disturbances should occur for surface layers that are stress–

free at a = O when yield strengths are in the kilobar range. However, the value

of E adopted here is fairly small. Particular materials could display yield

criteria for Yt and Bs an order of magnitude larger than we calculate.

The surface layer plastic bonds will be able to resist the pull of the

‘gravitational’ field if

Bt>; kbar , (32)

a condition that ought to be easy to meet. Finally, these bonds will be able to

resist the shearing stresses provided that

0s > 8 kbar . (33)

12



This condition is obviously a more stringent one, but it might be possible to

meet it. It is clear, though, that significantly larger values of kao would

probably lead to failure of the stabilization through rupturing of the surface

layer plastic bonds.

When the initial perturbations are machined in before the surface layer is

added to the plastic, the surface layer is initially stress-free and will remain

so for stabilized perturbations. In many device configurations, where one is

worried primarily about the fastest growing short–wavelength perturbations, this

mechanism could be quite useful, since growth of the dangerous perturbations is

inhibited. The unstabilized long wavelength instabilities will set up stresses

that rupture the surface layer, but this may well happen on a slow enough time

scale to be tolerable.

We emphasize again thatwe have made no specific assumption about the proc-

esses bonding the surface layer to the plastic. We assume that whatever processes

are involved are likely to involve a spatial thickness of at most a few tens of

Angstroms. Thus when we represent the composite surface layer (of pure surface

layer material and whatever material that results in the bonding layer) through

a uniform material with properties pe, a,and E, these properties are likely to be

near those of the pure surface layer material. We merely characterize these bonds

by the stresses Bt and Bs necessary to rupture them. We assume, but we don’t

know, that it is reasonable to find materials whose bond strengths are comparable

to the yield stresses in ordinary materials (several to tens of kbar).

When the various stresses exceed Yt, Bt,or Bs we expect that the surface

layer will cease to be able to stabilize disturbances. This could only fail to

be the case if the surface layer were able to alter the bulk properties of the

plastic material in a stabilizing direction for a thickness of roughly a wave-

length (that is, over an appreciable fraction of a centimeter). We do not know

how likely this possibility is. Recent experiments indicate that such a change

in bulk yield strength can occur under static loading conditions.

VI. STABILIZATION MECHANISMWHENINITIAL PERTURBATIONMACHINEDINTO PLASTIC

When the surface layer is added on after the initial perturbation is

machined into plastic (by unavoidable machining errors or deliberately, as in

Barnes etal.1) the initial state of the surface layer (at a(t) = ao) will be

stress-free. This changes the elastic energy of the surface layer to

13



E +&+ (~)2@2(~)APAk
= 1 1+(Y 1-20

elastic

1 El%

[ 1~’a 2 2
‘mm ‘+* o ‘(a-aO)’”

(34)

Thus, there will be a slight shift in the range of stabilized wavelengths which

we will ignore because normally we will have

~’a 2 <<1.
0 (35)

Then the principal change in the dynamics of a(t) is that the stabilizing elastic
I potential well is now centered about ao. In particular, the potential energy for

I the dynamical coordinate a(t) may be approximated as

() [~E (a-ao)’-
V(a) =$ ~ 1b’s’

Y

where

()()

b’ 1 A’ AJ
‘~~E”

I The motion is then stable when

I

b’<1,

(36)

(37)

I
as before, but now the system will oscillate about a new equilibrium position

~ according to

a b’ao
a(t) = Cos Wt ,(

(1-% ‘- (1-b’)
(38)

.

*

I where

1
14



L02= 41T3(+)j (1-b2).

.

Thus when b2 << 1 the stresses in the shear layer will be much smaller than

those estimated in the previous sections. Even when b2 is an

fraction of unity the average stresses wi~l be sma~ler” Only

will be of the order of the previous stress levels. Thus the

appreciable

the peak stresses

problem of yield

strengths being exceeded is much reduced in this case. Only when the limit of

stability (b2 - 1) is approached do we lose the needed mechanical properties

due to very high stresses. As noted previously, we believe this case is the

closest model of situations that will occur in practice.

The utility of this mechanism in device configurations (weapons applications

and laser-pellet and particle beam-pellet fusion devices) requires study before

an assessment can be given. What is required is to find regimes in which the

heavy material

properties for
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